Bits and Bytes

Today

- Why bits?
- Binary/hexadecimal
- Byte representations
- Boolean algebra
- Expressing in C
Why don’t computers use Base 10?

- Base 10 number representation
 - “Digit” in many languages also refers to fingers (and toes)
 - Of course, decimal (from Latin decimus), means tenth
 - A position numeral system (unlike, say Roman numerals)
 - Natural representation for financial transactions
 - Even carries through in scientific notation

- Implementing electronically
 - Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
 - Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
 - Messy to implement digital logic functions
 - Addition, multiplication, etc.
Binary representations

- **Base 2 number representation**
 - Represent 15213_{10} as 11101101101101_2
 - Represent 1.20_{10} as $1.0011001100110011[0011]…_2$

- **Electronic Implementation**
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires
 - Straightforward implementation of arithmetic functions

![Graph showing voltage levels at 0.0V, 0.5V, 2.8V, 3.3V with voltage levels for binary values 0, 1, 0]
Byte-oriented memory organization

- Programs refer to virtual addresses
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - In Unix and Windows NT, address space private to particular “process”
 - Program being executed
 - Program can manipulate its own data, but not that of others

- Compiler + run-time system control allocation
 - Where different program objects should be stored
 - Multiple mechanisms: static, stack, and heap
 - In any case, all allocation within single virtual address space
How do we represent the address space?

- **Hexadecimal notation**
- **Byte = 8 bits**
 - Binary: 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal: 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write $FA1D37B_{16}$ in C as $0xFA1D37B$
 - Or $0xfa1d37b$
Machine words

- Machine has “word size”
 - Nominal size of integer-valued data
 - Including addresses
 - A virtual address is encoded by such a word
 - Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - Newer systems are 64 bits (8 bytes)
 - Potentially address $\approx 1.8 \times 10^{19}$ bytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-oriented memory organization

- Addresses specify byte locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data type</th>
<th>32 bit</th>
<th>64-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short int</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long int</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long int</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>char*</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

– Portability:
 • Many programmers assume that object declared as int can be used to store a pointer
 – OK for a typical 32-bit machine
 – Problems on a 64-bit machine
Byte ordering

- How to order bytes within multi-byte word in memory
- Conventions
 - (most) Sun’s, IBM’s are “Big Endian” machines
 - Least significant byte has highest address (comes last)
 - (most) Intel’s are “Little Endian” machines
 - Least significant byte has lowest address (comes first)
- Example
 - Variable \(x \) has 4-byte representation \(0x01234567 \)
 - Address given by \&x is \(0x100 \)

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Reading byte-reversed Listings

- For most programmers, these issues are invisible
- Except with networking or disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code
- Example fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmp $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- Deciphering Numbers
 - Value: 0x12ab
 - Pad to 4 bytes: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
Examining data representations

- Code to print byte representation of data
 - Casting pointer to `unsigned char *` creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len) {
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n",
               start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- `%p`: Print pointer
- `%x`: Print Hexadecimal
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
Representing strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue
 - Data are single byte quantities
 - Text files generally platform independent
 - Except for different conventions of line termination character(s)!

```c
char S[6] = "15213";
```
Machine-level code representation

- Encode program as sequence of instructions
 - Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
 - Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)
 - Different machines → different ISA & encodings
 - Most code not binary compatible

- A fundamental concept:
 Programs are byte sequences too!
Representing instructions

```c
int sum(int x, int y)
{
    return x+y;
}
```

- Sun use 2 4-byte instructions
 - Differing numbers in other cases
- PC uses 7 instructs with lengths 1, 2, and 3 bytes
 - Mostly the same for NT and for Linux
 - NT / Linux not fully binary compatible

<table>
<thead>
<tr>
<th>Linux 32</th>
<th>55</th>
<th>89</th>
<th>E5</th>
<th>8B</th>
<th>45</th>
<th>0C</th>
<th>03</th>
<th>45</th>
<th>08</th>
<th>C9</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>55</td>
<td>89</td>
<td>E5</td>
<td>8B</td>
<td>45</td>
<td>0C</td>
<td>03</td>
<td>45</td>
<td>08</td>
<td>5D</td>
<td>C3</td>
</tr>
<tr>
<td>Sun</td>
<td>81</td>
<td>C3</td>
<td>E0</td>
<td>08</td>
<td>90</td>
<td>02</td>
<td>00</td>
<td>09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Different machines use totally different instructions and encodings
Boolean algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

<table>
<thead>
<tr>
<th>~</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master’s Thesis
 - Reason about networks of relay switches
 • Encode closed switch as 1, open switch as 0

Connection when

\[A \& \sim B \mid \sim A \& B \]

= \[A^\wedge B \]
Integer & Boolean algebra

- **Integer Arithmetic**
 - $\langle \mathbb{Z}, +, \ast, -, 0, 1 \rangle$ forms a mathematical structure called “ring”
 - Addition is “sum” operation
 - Multiplication is “product” operation
 - $-$ is additive inverse
 - 0 is identity for sum
 - 1 is identity for product

- **Boolean Algebra**
 - $\langle \{0,1\}, \mid, \&, \sim, 0, 1 \rangle$ forms a mathematical structure called “Boolean algebra”
 - Or is “sum” operation
 - And is “product” operation
 - \sim is “complement” operation (not additive inverse)
 - 0 is identity for sum
 - 1 is identity for product
Boolean Algebra \(\approx \) Integer Ring

<table>
<thead>
<tr>
<th>Property</th>
<th>Expression</th>
<th>Property</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative</td>
<td>(A \lor B = B \lor A)</td>
<td>(A + B = B + A)</td>
<td>(A \cdot B = B \cdot A)</td>
</tr>
<tr>
<td></td>
<td>(A \land B = B \land A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associativity</td>
<td>((A \lor B) \lor C = A \lor (B \lor C))</td>
<td>((A + B) + C = A + (B + C))</td>
<td>((A \cdot B) \cdot C = A \cdot (B \cdot C))</td>
</tr>
<tr>
<td></td>
<td>((A \land B) \land C = A \land (B \land C))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product distributes over sum</td>
<td>(A \land (B \lor C) = (A \land B) \lor (A \land C))</td>
<td>(A \cdot (B + C) = A \cdot B + B \cdot C)</td>
<td></td>
</tr>
<tr>
<td>Sum and product identities</td>
<td>(A \lor 0 = A)</td>
<td></td>
<td>(A + 0 = A)</td>
</tr>
<tr>
<td></td>
<td>(A \land 1 = A)</td>
<td></td>
<td>(A \cdot 1 = A)</td>
</tr>
<tr>
<td>Zero is product annihilator</td>
<td>(A \land 0 = 0)</td>
<td></td>
<td>(A \cdot 0 = 0)</td>
</tr>
<tr>
<td>Cancellation of negation</td>
<td>(\sim (\sim A) = A)</td>
<td></td>
<td>(\neg (\neg A) = A)</td>
</tr>
</tbody>
</table>
Boolean Algebra ≠ Integer Ring

<table>
<thead>
<tr>
<th>Boolean: Sum distributes over product</th>
<th>$A \lor (B \land C) = (A \lor B) \land (A \lor C)$</th>
<th>$A + (B \ast C) \neq (A + B) \ast (B + C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean: Idempotency</td>
<td>$A \lor A = A$</td>
<td>$A + A \neq A$</td>
</tr>
<tr>
<td></td>
<td>$A \land A = A$</td>
<td>$A \ast A \neq A$</td>
</tr>
<tr>
<td>Boolean: Absorption</td>
<td>$A \lor (A \land B) = A$</td>
<td>$A + (A \ast B) \neq A$</td>
</tr>
<tr>
<td></td>
<td>$A \land (A \lor B) = A$</td>
<td>$A \ast (A + B) \neq A$</td>
</tr>
<tr>
<td>Boolean: Laws of Complements</td>
<td>$A \lor \lnot A = 1$</td>
<td>$A + \lnot A \neq 1$</td>
</tr>
<tr>
<td>Ring: Every element has additive inverse</td>
<td>$A \lor \lnot A \neq 0$</td>
<td>$A + \lnot A = 0$</td>
</tr>
</tbody>
</table>
Properties of \& and ^

- **Boolean ring**
 - \(\langle \{0,1\}, ^, \& , I, 0, 1 \rangle \)
 - Identical to integers mod 2
 - \(I \) is identity operation: \(I (A) = A \)
 - \(A ^ A = 0 \)

- **Property: Boolean ring**
 - Commutative sum \(A ^ B = B ^ A \)
 - Commutative product \(A \& B = B \& A \)
 - Associative sum \((A ^ B) ^ C = A ^ (B ^ C) \)
 - Associative product \((A \& B) \& C = A \& (B \& C) \)
 - Prod. over sum \(A \& (B ^ C) = (A \& B) ^ (B \& C) \)
 - 0 is sum identity \(A ^ 0 = A \)
 - 1 is prod. identity \(A \& 1 = A \)
 - 0 is product annihilator \(A \& 0 = 0 \)
 - Additive inverse \(A ^ A = 0 \)
Relations between operations

- **DeMorgan’s Laws**
 - Express & in terms of |, and vice-versa
 - $A \& B = \sim(\sim A \mid \sim B)$
 - A and B are true if and only if neither A nor B is false
 - $A \mid B = \sim(\sim A \& \sim B)$
 - A or B are true if and only if A and B are not both false

- **Exclusive-Or using Inclusive Or**
 - $A ^ B = (\sim A \& B) \mid (A \& \sim B)$
 - Exactly one of A and B is true
 - $A ^ B = (A \mid B) \& \sim(A \& B)$
 - Either A is true, or B is true, but not both
General Boolean algebras

- Boolean operations can be extended to work on bit vectors
 - Operations applied bitwise

<table>
<thead>
<tr>
<th>01101001 & 01010101</th>
<th>01101001</th>
<th>01101001 & 01010101</th>
<th>01101001</th>
<th>01101001</th>
</tr>
</thead>
<tbody>
<tr>
<td>01000001</td>
<td>01111101</td>
<td>00111100</td>
<td>10101010</td>
<td></td>
</tr>
</tbody>
</table>

- All of the properties of Boolean algebra apply
- Now, Boolean |, &, and ~ correspond to set union, intersection and complement
Representing & manipulating sets

• Useful application of bit vectors – represent finite sets

• Representation
 – Width w bit vector represents subsets of \{0, ..., w–1\}
 – \(a_j = 1\) if \(j \in A\)
 • 01101001 represents \{0, 3, 5, 6\}
 • 01010101 represents \{0, 2, 4, 6\}

• Operations
 – \& Intersection 01000001 \{0, 6\}
 – | Union 01111101 \{0, 2, 3, 4, 5, 6\}
 – ^ Symmetric difference 00111100 \{2, 3, 4, 5\}
 – ~ Complement 10101010 \{1, 3, 5, 7\}
Bit-level operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - ~0x41 --> 0xBE
 - ~01000001₂ --> 10111110₂
 - ~0x00 --> 0xFF
 - ~00000000₂ --> 11111111₂
 - 0x69 & 0x55 --> 0x41
 - 01101001₂ & 01010101₂ --> 01000001₂
 - 0x69 | 0x55 --> 0x7D
 - 01101001₂ | 01010101₂ --> 01111101₂
Logic operations in C – not quite the same

- Logical operations ||, && and ! (Logic OR, AND and Not)
 - Contrast to logical operators
 - View 0 as “False”
 - But anything nonzero as “True”
 - Always return 0 or 1
 - Early termination (if you can answer by just looking at first argument, you are done)

- Examples (char data type)
 - !0x41 → 0x00
 - !0x00 → 0x01
 - !!0x41 → 0x01
 - 0x69 && 0x55 → 0x01
 - 0x69 || 0x55 → 0x01
Shift operations

- **Left shift:** $x \ll y$
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right shift:** $x \gg y$
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation
 - For unsigned data, \gg must be logical; for signed data either could be used
 - Which one? Most follow this but not all
Main points

- It’s all about bits & bytes
 - Numbers
 - Programs
 - Text
- Different machines follow different conventions
 - Word size
 - Byte ordering
 - Representations
- Boolean algebra is mathematical basis
 - Basic form encodes “false” as 0, “true” as 1
 - General form like bit-level operations in C
 - Good for representing & manipulating sets